Quantcast
Channel: Bengts nya villablogg
Viewing all 318 articles
Browse latest View live

Hög solstrålning 2018 med flera rekord

$
0
0

Den så kallade globala solstrålningen mot en solcellsmodul är summan av strålningens olika komponenter: direkt, diffus och reflekterad. SMHI mäter den globala solstrålningen mot en horisontell yta på olika platser i Sverige. 2018 var tveklöst ett mycket bra solår. 10 av stationerna slog rekord sedan startåret, som varierar från 1983-2014 för dessa stationer. De äldsta rekorden som slogs var de för Göteborg, Växjö och Lund, där mätningarna startade 1983.

Den globala strålningen var högre än det högsta värdet under åren 2002-2018 vid 15 av mätstationerna, vilket var alla utom Kiruna av de som redovisade data för 2018. Största höjningarna svarade Östersund och Borlänge för med 6,6% respektive 5,5%.

Solstrålningen under 2018 var högre än årsmedel för 2002-2018 för alla 16 stationer med redovisade data, där Borlänge och Umeå toppar med 13,1% respektive 12,0% högre värde.

Högst solstrålning under 2018 hade Hoburg på Gotland med 1201,1 kWh/m2. Det är bara 1,3% läge än högsta värdet som  någonsin uppmätts vid någon av SMHI:s stationer, vilket är 1217,5 kWh/m2 i Karlstad 1968. Medelvärdet för de 16 mätstationer som redovisade data under 2018 var 1072 kWh/m2.

Jämför man med SMHI:s normalperiod 1961-1990 var solstrålningen högre under 2018 för alla 16 mätstationer som hade data. Vinnaren var Växjö med 18,3% högre värde. Observera dock att denna ”normalperiod” inte varit det normala under 2000-talet, då solstrålningen varit högre i södra Sverige än under normalperioden. Det bara i Kiruna och Östersund som solstrålningen varit lägre under 2000-talet än under 1961-1990. Även här är Växjö vinnare med 8,6% högre årlig solstrålning 2002-2018 jämfört med 1961-1990.

2018 hade 5-23% högre solstrålning vid SMHI:s mätstationer jämfört med 2017, där Lund toppade med hela 23%. I genomsnitt blev det 11% högre under 2018 om man tar med Kiruna vars värden för 2018 är interpolerat eller 12% högre om man räknar bort Kiruna.

Normalperiod

SMHI skriver ”Världsmeteorologiska organisationen (WMO) har därför bestämt att statistiska parametrar, som används för klimatbeskrivningar, skall beräknas för så kallade normalperioder. Normalperioderna är oftast 30-årsperioder, där 1961-90 är den nu gällande standardnormalperioden.”

Solstrålningen på jordytan ändras med tiden

Förändringarna under 2000-talet jämfört med ”normalperioden” 1961-1990 beror inte på att solens utstrålning ändrats. Utanför jordens atmosfär är solstrålningen nästan konstant, 1 361 W/m2. Variationen under en 11-årig solcykel är i medeltal 0,1% enligt senare årtiondens mätningar. I tidsskalor om timmar eller veckor kan variationer på 0,34% förekomma. Mer finns att läsa i artikeln ”A new, lower value of total solar irradiance: Evidence and climate significance”.

De förändringar som skett av solstrålningen på marknivå beror på att molnighet, och kanske antalet partiklar i atmosfären (“global dimming“), förändrats och att dessa förändringar varit olika inom Sverige.

Solstrålningens variationer

Diagrammen här nedan visar min, medel och max under åren 2002-2018 (notera att en del nyare stationer inte har data för hela perioden) och en jämförelse av denna period med normalperioden (de nyare stationerna saknar värden från normalperioden och är därför inte medtagna) samt en jämförelse för enbart 2018 med normalperioden och perioden 2002-2018.

Som framgår av det första diagrammet varierar solstrålningen mellan olika år. För de stationer som haft mätningar under minst 10 år har solstrålningen varierat mellan ±5,5% (Kiruna) till ±10,5% (Borlänge) jämfört med medelvärdet under perioden 2002-2018.

Undantaget fjälltrakterna var alla stationers årliga solstrålning under 2018 inom ±12%, se tabellen längst ner. Trots att Sverige är ett långt land är variationerna i årlig solstrålning alltså inte så värst stora inom landet.

Se även inläggen
Skillnad mellan global, diffus och direkt solinstrålning?
Solstrålning per månad kan variera mycket mellan olika år
Solstrålningen 2017 lägre än normalt under 2000-talet
Samband soltimmar och solstrålning?

Klicka på diagrammen för att se dem i större skala.

Nedanstående tabell visar uppmätt global solstrålning (kWh/m2) mot en horisontell yta vid SMHI:s mätstationer under 2017. och 2018 samt en jämförelse mellan åren. Data är från SMHI, där * markerar interpolerat värde. 

Station 2017 2018 2018 jämfört med 2017
Kiruna 799,9 839,9* +5%
Luleå 884 994,9 +13%
Umeå 886,7 1037,5 +17%
Storlien-Visjövalen 851,3 932,8 +10%
Östersund 862,1 1016,0 +18%
Borlänge 942,8 1080,8 +15%
Karlstad 997,4 1102,3 +11%
Svenska Högarna 1074,1 1160,9 +8%
Stockholm 990,6 1097,9 +11%
Norrköping 1009,4 1107,9 +10%
Nordkoster 1034,9 1122,5 +8%
Göteborg 972,6 1068,7 +10%
Visby 1089,1* 1175,4 +8%
Hoburg 1147,9 1201,1 +5%
Växjö 935,1 1078,1 +15%
Lund 925,9 1141,0 +23%
Medel 963 1072 11%

 


12% solel i Danmark mitt på dagen igår

$
0
0

Igår producerade solceller i Danmark som mest 561 MWh under timmen kl. 12-13. Under samma timme svarade solceller för 12,0% av Danmarks elanvändning. Intressant att solel i vårt nära grannland svarade för så stor andel av landets elförsörjning med tanke på att vi bara är i mitten av mars månad. Under dessa timmar var det uppenbarligen svaga vindar och vindkraften svarade bara för 3-7% av Danmarks elanvändning, vilket gjorde att man fick importera 31-31% av sin elanvändning under dessa timmar.

Rekord för dansk solel 2018

Under 2018 slog solel i Danmark nytt rekord med 2,8% (0,95 TWh) av Danmarks elanvändning, medan vindkraft svarade för 40,7% (13,9 TWh), vilket var under 2017 års rekord med 43,4%. Andelen solel har under sex år ökat från 0,3% till 2,8% i Danmark. En kittlande fråga är hur länge det dröjer inte vi har nått denna nivå i Sverige. Inom 5-10 år är min gissning. Att tänka på är att Sveriges elanvändning per invånare är betydligt högre än i Danmark.

Under 2018 var den högsta solelproduktion i Danmark under en timme 715 MWh den 2 juli kl. 13-14. Detta dygn gav också 2018 års högsta solelproduktion med 6,4 GWh. Den timme som hade högst solandel var 6 maj 2018 kl. 13-14 då man hade 21,5% solel. 20 maj 2018 var det dygn som hade högst solandel av Danmarks elanvändning med 8,5%.

I slutet av 2017 hade Danmark 907 MW solceller anslutna till elnätet enligt en dansk IEA-rapport. Det kan jämföras med Sverige som 2017 hade 231 MW nätanslutet enligt SCB:s statistik över nätanslutna solcellsanläggningar och 309 MW nätanslutet enligt IEA-rapporten National Survey Report of PV Power Applications in Sweden 2017.

Import och export av el i Danmark

Som mest under en timme importerade Danmark 2,1 GWh el igår. Det motsvarar ungefär två svenska kärnkraft på full effekt. De svenska kärnkraftverken har en toppeffekt på 0,87-1,45 GW. Dagen innan var det blåsigt väder åtminstone på morgonen och då kunde man istället exportera 1,3 GWh som mest under en timme.

Detta visar vilka utmaningar framtida elförsörjning står inför när andelen el från vind och sol ökar, där det kommer att bli mycket större svängningar i elproduktionen än vad vi är vana vid idag. Bättre möjlighet till elöverföring i elnätet, användarflexibilitet, energilagring och energieffektivisering kommer att bli alltmer viktigt när andelen el från vind och sol ökar.

Möjligheter till överföring av el inom ett land och mellan länder kommer att bli allt viktigare. En annan lösningar är ökad så kallad användarflexibilitet, det vill säga att användarnas elanvändning flyttas från tider med låg till hög elproduktion. En tredje lösning är utökad energilagring, att exempelvis småhus som har solceller sparar sitt överskott under dagen och använder på kvällen och natten när solen inte lyser. Vi får inte heller glömma energieffektivisering, den bästa energin är den som inte används…

Källa till data från Danmark

Danmarks data är hämtade från Energinet. Jag antar att ovanstående tal bara avser den el som matas in till nätet och att egenanvänd solel, liksom i Sverige, inte ingår i statistiken. Här nedan visas en skärmdump som visas data per timme för Danmarks elförsörjning igår.

PS 12 mars. Fick revidera sifforna och första diagrammet något för Danmarks produktion under gårdagen då siffervärdena hade ändrats när jag tittade idag. Gårdagens värde var tydligen preliminära.

 

8,4% solel i Tysklands slutliga elanvändning 2018

$
0
0

Under 2018 svarade solceller för 8,4% (45,75 TWh) av Tysklands slutliga elanvändning på 545 TWh enligt data från Fraunhofer ISE. Solelen ökade med 16% (6,3 TWh) under 2018. Den installerade solellseffekten var 45,93 GW vilket var en ökning med 3 GW under 2018. Det motsvarar 558 W solceller per invånare. I Sverige var det 23-31 W solceller per invånare i slutet av 2017, beroende på om man går på SCB:s eller IEA:s statistik för installerad effekt. Statistik för Sverige har inte kommit för 2018 än, men en uppskattning är en ökning till 40-50 W per invånare med tanke på hur mycket solelproduktionen ökade 2018.

Vi är alltså en dryg tiopotens efter Tyskland när det gäller installerade solceller, räknat per invånare. Vi är också långt efter Danmark, som hade 158 W per invånare i slutet av 2017. Med andra ord finns god potential till förbättring i Sverige.

Som mest producerade solceller i Tyskland 32 GW den 2 juli kl. 13.15, vilket då motsvarade 39% av Tysklands elgenerering. Det kan jämföras med Sverige där vi som mest under en timme 2018 hade 1,18% solel i den elmix som matas in till nätet enligt data från Svenska Kraftnät. Danmark toppade på 21,5% under bästa timmen 2018.

Som mest under ett dygn svarade solel för 22,6% av Tysklands elmix den 6 maj.

Klicka på diagrammen för att se dem i större skala.

Export Tyskland

Om man istället för andel solel i Tysklands elmix tittar på den nettoproduktionen i absoluta tal ser man att solel under dagen med högsta andel ger ett stort tillskott mitt på dagen, se diagram här nedan. Tittar man sedan import och export går en stor andel av elproduktionen mitt på dagen på export, se nästföljande diagram.

Har lite svårt att tolka de olika data som anges för import och export. I utrikes handel (”foreign trade”) anges en export på 64,8 TWh och en import på 26,4 TWh leda till en nettoexport på 38,5 TWh under 2018. I ett annat textstycke anges exportöverskottet till 45,6 TWh om man ser på ”physical flows”, enligt diagram bestående av 55,32 TWh export och 9,11 TWh import.

Datakälla

Data för Tyskland är hämtade från webbsidan Energy Charts från Fraunhofer ISE. När det gäller installerad effekt för solceller står 45,5 GW i texten från 4 januari på förstasidan, men tittar man i diagram för installerad effekt anges 45,93 GW. Antog att diagrammen hade de färskaste data. I texten från 4 januari står att ökningen av installerade effekt för solceller var 3,2 GW under 2018 men skillnaden i diagrammen för 2018 och 2017 ger 2,96 GW. Skrev därför 3 GW i inledningen.

Observera att data från Tyskland avser slutlig energianvändning: ”This report presents the data on German net electricity generation for public electricity supply. The figures thus represent the electricity mix that actually comes out of the socket at home and that is consumed in the household or is used to charge electric vehicles publicly.”

Fraunhofer påpekar att tittar man på bruttoproduktion inklusive förluster får man andra värden.

Varför har Danmark så mycket mer solel än Sverige?

$
0
0

Man kan fråga sig hur det kan komma sig att vårt grannland Danmark under 2018 hade som mest 21,5% solel i sin elmix medan det i Sverige var som mest 1,18% under en timme, av den elproduktion som matas in till nätet. Totalt under 2018 hade Danmark 2,8% i sin elmix, medan Sverige uppskattningsvis hade 0,2-0,3%.

Det finns flera förklaringar till det:

  • Danmark har betydligt mer installerade solceller per invånare än i Sverige. Danmark hade 158 W per invånare 2017, medan Sverige 2018 uppskattningsvis hade 40-50 W per invånare. Det finns två viktiga orsaker till denna stora skillnad.
    • Danmark hade tidigare en betydligt mer offensiv politik när det gäller solceller än Sverige. Årsvis nettodebitering var tillåten för solcellsanläggningar upp till 6 kW. I kombination med sjunkande priser för solcellsanläggningar gav det en lavinartad ökning av antalet installationer under 2012, se National Survey Report of PV Power Applications in Denmark 2012. Det gjorde att danska regeringen fick kalla fötter och tog bort möjligheten till årsvis nettodebitering.
    • Konsumenternas elpris är betydligt högre i Danmark än i Sverige, vilket gör att lönsamheten för egenanvänd solel är bättre i Danmark. Elpriser i olika länder redovisas av Eurostat, men man får komma ihåg att i dessa priser ingår även de fasta avgifterna. Dessa priser är därför inte helt relevanta för en solcellsägare där solel ersätter köpt el och där värdet är den rörliga andelen av köppriset, exklusive fasta avgifter.
  • Danmark har en betydligt lägre elanvändning per invånare än Sverige och med samma mängd solel blir andelen solel därmed högre i Danmark än i Sverige. 2017 var den svenska slutliga elanvändningen per invånare 2,3 gånger högre i Sverige än i Danmark, enligt uträkning med hjälp av data från Energiläget i siffror 2019 från svenska Energimyndigheten och Energy statistics 2017 från Energistyrelsen i Danmark.

Små skillnader i solstrålning

En förklaring som däremot är av marginell betydelse är tron att Danmark genom ett sydligare läge skulle ha högre solinstrålning än Sverige. Studerar man solinstrålningskartor för Sverige och Danmark visar de endast små skillnader mellan Danmark och Sverige från Mälardalen och söderut.

Bornholm ligger i topp i Danmark, med globalstrålning 1160-1170 kWh/m2 mot horisontell yta enligt PVGIS databas ERA5. I Sverige toppar Gotland med 1120-1150 kWh/m2. Om vi jämför stora städer i PVGIS har centrala Köpenhamn och Malmö båda en globalstrålning på 1020 kWh/m2, medan centrala Göteborg har 1040 kWh/m2 och centrala Stockholm har 991 kWh/m2, bara 3% lägre än Köpenhamn.

Använde databasen ERA5 i denna jämförelse då den ger produktionsvärden för solel som bäst stämmer med verkligheten i Mälardalen. Solstrålningsdata i PVGIS varierar beroende på vilken databas man använder, bland annat beroende på vilka år de använder, men generellt skiljer bara enstaka procent i årlig solstrålning mellan Danmark och Sverige från Mälardalen och söderut. Därför beror en högre solandel i Danmarks elmix inte på att de har så mycket bättre solstrålning över året.

Solstrålningskartor

Här nedan visas kartor som visar global solstrålning mot en  horisontell yta för Danmark och Sverige. Global solstrålning är den totala strålningen mot en yta och består av direkt, diffus och reflekterad strålning. För Danmark är det data för åren 2001-2010 medan det för Sverige är data för den meteorologiska perioden 1961-1990. Dessa svenska data är inaktuella då solinstrålningen i södra delen av Sverige varit högre under 2000-talet. Se diagrammet längst ner som jämför solstrålningen vid SMHI:s mätstationer sedan 2002 jämfört med 1961-1990, där det även framgår att 2018 var ett extremt bra solår i Sverige.

Solceller ökade med 78% i Sverige under 2018

$
0
0

Idag släppte SCB ny statistik över nätanslutna solcellsanläggningar i Sverige. Vid utgången av 2018 fanns 25 486 solcellsanläggningar, en ökning med 10 188 (67%) anläggningar sedan 2017. Den installerad effekten ökade under 2018 med 180 MW (78%) till 411 MW. Det betyder att knappt hälften av alla nätanslutna solceller i Sverige installerades ifjol!

Detta gör 40 W installerad effekt per invånare vid utgången av 2018, en ökning från 2017 års 23 W per invånare. Bland länen ligger Gotland i topp med 96 W per invånare. Intressant är att man i nordliga Jämtlands län har mera solceller per invånare än i våra sydligaste län Skåne och Blekinge, se nedanstående kartor och tabell som visar solcellseffekt per län och per invånare i varje län.

Västra Götalands län och Skånes län har med 62,5 MW respektive 62,4 MW mest installerad effekt. Fyra län har mer än fördubblat den installerade effekten under 2018, det är Västra Götalands, Dalarnas, Gävleborgs och Västernorrlands län.

Resultaten har publicerats av SCB och baseras på en enkät som Energimyndigheten skickat till landets alla elnätföretag (ca 170 “objekt” enligt beskrivningen), där bortfallet av svarande anges till mindre än en procent i Kvalitetsdeklaration Nätanslutna solcellsanlänningar.

Mindre solcellsanläggningar dominerar i antal

Anläggningar på småhus dominerar i antal. 84% av anläggningar har en installerad effekt upp till 20 kW och de svarar för 46% av den totala installerad effekten. Antalet stora anläggningar har ökat till tio som har över 1 MW installerad effekt och de svarar för 4% av den totalt installerade effekten.

Installerad effekt Antal solcellsanläggningar Andel Installerad effekt (MW) Andel
0 – 20 kW 21 535 84% 189 46%
20 – 1 000 kW 3 941 15% 205 50%
1 000+ kW 10 0,04% 17 4%
Totalt 25 486 411

Andel solel i Sverige

Med 411 MW installerat och antaget ca 900 kWh/kW per år i genomsnitt blir det 0,37 TWh under ett år, vilket motsvarar 0,23% vid 160 TWh elproduktion, som det var 2017 enligt SCB:s statistik. Elanvändningen var 130 TWh under 2017 och som andel av elanvändningen motsvarar det 0,28% solel.

Installerad effekt

I kvalitetsdeklaration anges att

“Den installerade effekten, som vi samlar in och redovisar, motsvarar effekten som solpanelerna eller växelriktaren teoretiskt avlämnar under standardiserade förhållanden. Effekten påverkas i praktiken av strålningsstyrkan och celltemperaturen. Den installerade effekten definieras varken i växelström eller i likström (AC eller DC) utan som den för systemet begränsande effekten.”

Det är en något kryptisk text. Dels anger man “…effekten som solpanelerna eller växelriktaren teoretiskt avlämnar…”. Dels är den sista meningen obegriplig. Möjligen kan man mena att man använder växelriktarens effekt som installerad effekt, vilket motsägs av den första meningen. I sådana fall är det en AC-effekt och det avviker då från exempelvis Skatteverkets tolkning av installerad effekt, som är summan av modulernas märkeffekt (DC).

Det väcker frågan vilken effekt som nätägarna har rapporterat in i denna undersökning. Anläggningens märkeffekt eller växelriktarnas maxeffekt? Ur nätägarens synvinkel är det mera intressant att veta växelriktarnas maxeffekt eftersom det anger den högsta möjliga inmatade effekten till nätet.

Pressmeddelande från Energimyndigheten: Ett år senare – 10 000 fler nätanslutna solcellsanläggningar.

 

 

Investeringsstöd till solceller – 2019 års budget höjs och stödnivån sänks

$
0
0

Enligt SVT nyheter och Regeringskansliet idag höjer regeringen 2019 års budget för investeringsstöd till solceller med 300 miljoner. Man anger att stödet totalt uppgår till 736 miljoner under 2019. I budgeten som beslutades i december avsattes 535 miljoner till området Energiteknik, vilket var en sänkning med 440 miljoner i förhållande till den tilltänkta budgeten:

“Anslaget motiveras med att utskottet förordar att stödet till solceller minskas med 440 miljoner kronor 2019 i förhållande till regeringens förslag”.

I och med dagens besked återställer regeringen nästan budgeten till den tidigare tänkta nivån. I regleringsbrev till Energimyndigheten står att “Högst 436 000 000 kronor får användas för stöd till solceller. Av dessa får högst 7 600 000 kronor användas för administrativa kostnader anknutna till stödet.” Med dagens tillskott på 300 miljoner hamnar totalen på 736 miljoner för investeringsstödet.

Samtidigt sänks stödnivån i investeringsstödet från 30% till 20% för ansökningar som behandlas från och med 1 maj, alltså även för de som redan står i kö. Det framgår inte om man kommer att ändra på det maximala stödbeloppet som idag är 1,2 miljoner per solcellssystem enligt Förordning (2009:689) om statligt stöd till solceller. Enligt en tweet från Johan Lindahl, Svensk Solenergi, kommer detta maxbelopp att behållas.

Det är bra att investeringsstödet höjs då många står i kö. Genom att sänka nivån kan flera ta del av stödet. Om hela budgeten kommer att användas kommer det att byggas solcellssystem för 3,68 miljarder enbart med hjälp av investeringsstödet. Det kommer dessutom sannolikt att byggas en del utan investeringsstöd. Även 2019 ser därmed ut att bli ett ljust år för solcellsbranschen i Sverige.

I en tweet flaggar Centerpartiets Rickard Nordin för att i

“Höstbudgeten nästa år genomförs “Grönt avdrag”. Då slipper vi osäkerheten”

Det är spännande. Det skulle i sådana fall betyda att investeringsstödet går i graven och ersätts av ett “Grönt avdrag” från och med 2021? Enligt Centerpartiets webb skulle detta gröna avdraget vara ett skatteavdrag för bland annat installation av solceller, installation av solvärme, lagring av energi och installation av laddboxar för elbilar.

PS. Reviderade två första styckena med info via Johan Lindahl på Twitter varför det blev 736 miljoner i total budget för investeringsstödet 2019.

Vad påverkar effekten hos en solcellsanläggning?

$
0
0

En vanlig fråga är varför en solcellsanläggning inte producerar den märkeffekt anläggningen har. Skrev om detta redan 2012 i inlägget “Varför ger solcellsmoduler inte märkeffekten?“. Här kommer en uppdatering.

Installerad effekt = märkeffekt

En anläggnings installerade effekt är summan av modulernas märkeffekt. Om man har låt säga 20 moduler och varje modul har en märkeffekt på 250 W blir anläggningens märkeffekt 20 x 250 W = 5 000 W = 5 kW.

Haken är dock att märkeffekten bara gäller vid så kallade “standard test conditions” (STC), vilka är

  • Solinstrålning 1000 W/m², med 0 graders infallsvinkel (normalt infall).
  • Solcelltemperatur 25°C.
  • “Air mass” = 1,5 vilket talar om den optiska väglängden genom atmosfären och som därmed definierar ett visst solspektrum. AM = 1 då solen står i zenit = rakt upp, vilket inte kan inträffa i Sverige.

Dessa parametrar är praktiska när tillverkaren ska testa modulens prestanda i fabrik. Däremot har man i stort sett aldrig dessa förhållanden i verkligheten och speciellt inte sommartid i Sverige. Om det är en klar dag på sommaren med hög lufttemperatur kan solcelltemperaturen bli 60-70°C, vilket är mycket högre än STC-temperaturen, se figuren här nedan. Den högre temperaturen gör att solcellsmodulens verkningsgrad sjunker. En vanlig temperaturkoefficient för effekten för kiselbaserade solcellsmoduler är -0,4%/°C, vilket beror på att spänningen sjunker vid ökad temperatur. Det betyder att för varje grad högre solcelltemperatur än vid STC-temperaturen 25°C sjunker effekten med 0,4% om övriga parametrar är lika. Vid exempelvis 35 grader högre temperatur än vid STC sjunker effekten med 1-0,996^35 = 0,13 = 13%, enbart på grund av den högre temperaturen. Om å andra sidan solcelltemperaturen går under 25°C ökar verkningsgraden jämfört med vid STC.

En solcellsmoduls effekt

En generell formel för en solcellsmoduls effekt är

P = η·A·G

där

P = effekten i Watt (W). Notera att modulen ger likström (DC) och när man läser av den producerade effekten är det växelström (AC). Det uppstår förluster i kablar (vanligen högst 1%) och i växelriktaren (några %) som omvandlar strömmen till växelström (AC). Hur stora dessa förluster blir beror på kablarnas dimension och längd samt växelriktarens verkningsgrad. Grövre och kortare kablar ger lägre kabelförluster. Man vill ha en växelriktare med hög verkningsgrad för att minska förlusterna i växelriktaren.

η = solcellsmodulens verkningsgrad, som beror på solcelltemperatur, solstrålningens infallsvinkel och solstrålningens intensitet. Verkningsgraden talar om hur stor andel av den infallande solstrålning som omvandlas till elektricitet (DC). En vanlig modulverkningsgrad idag är 17-18% vid STC. Enligt exemplet ovan blir dock verkningsgraden en annan om temperaturen avviker från STC-temperaturen 25°C. Solcelltemperaturen beror av hur solcellen är monterad, solinstrålningens intensitet, lufttemperatur och vindhastighet.

Den direkta solstrålningens infallsvinkel beror på modulernas lutning och mot vilket väderstreck modulerna är riktade. Infallsvinkeln kommer dessutom att variera över dagen och året samt är vanligen en annan än de 0 grader som gäller vid STC. Modulens yta är antireflexbehandlad för att minimera reflektionsförluster. Vid höga infallsvinklar ökar dock reflektionsförlusterna enligt figuren och därmed sjunker solcellseffekten.

Det finns även ett visst beroende hos verkningsgraden av solinstrålningens intensitet. Vid relativt höga intensiteter sjunker verkningsgraden sakta med sjunkande intensitet, vid låga intensiteter sjunker verkningsgraden mer markant enligt figuren.

A = ytan i kvadratmeter (m²). För en solcellsmodul ska man ta med hela ytan, även ramen om en sådan finns.

G = solinstrålningens intensitet (W/m²). Den består av tre olika komponenter; direkt, diffus och reflekterad solstrålning. Om det är mulet väder finns bara diffus och reflekterad solstrålning. Läs mer i inlägget Skillnad mellan global, diffus och direkt solinstrålning?. Den solstrålning som når modulens yta kan minska på grund av skuggning, smuts, pollen eller snö på modulerna.

Utanför jordens atmosfär är solstrålningen 1 361 W/m². Vid havsnivå får vi nöja oss med som mest ungefär 1 000 W/m². Det är dock ett känt fenomen att reflektion i moln vid varierad molnighet kortvarigt kan ge en högre effekt än vid molnfritt väder. Exempelvis uppmätte man som mest 1 477±30 W/m2 vid havsnivå i Brasilien 2008. I en norsk studie nära havsnivå registrerade man 2012 som mest 1 528 W/m2 kortvarigt och på hög höjd har intensiteter på över 1 800 W/m2 registrerats.

Tolerans

Man ska även komma ihåg att modulernas märkeffekt har en viss tolerans. Exempelvis -0% till +3%. Det betyder att när modulens testades hos tillverkaren var modulens effekt minst lika stor som märkeffekten och i bästa fall upp till 3% högre än märkeffekten. En modul med märkeffekten 250 W skulle då kunna ge 257,5 Watt vid STC. I praktiken är det dock inte säkert att man har så stor nytta av det. När man köper en bunt moduler är det att förvänta att modulerna har lite olika tolerans inom det angivna intervallet. Modulerna monteras i serie i en sträng. Det blir då den modul som ger lägst ström utan skuggning som bestämmer vilken strömmen blir, eftersom samma ström måste gå genom alla moduler som monterats i serie.

En alltför vanlig missuppfattning är att skuggning av en modul sänker effekten i hela strängen av seriekopplade moduler. Vid skuggning går bypassdioderna in och det blir bara hos den eller de skuggade modulerna som effekten sänks. Övriga moduler kommer att producera normalt.

Ska man vara oroad?

En fråga blir om man ska vara oroad över att en solcellsanläggning inte ger lika hög effekt som märkeffekten. Generellt blir svaret nej på den frågan. Man kan för det mesta sitta lugnt i båten.

Det händer dock ibland att en modul eller en växelriktare går sönder. När det gäller moduler är ett tänkbart fel att en så kallad bypassdiod går sönder och kortsluts. Man har vanligen tre bypassdioder per modul och om en kortsluts kommer man då att förlora 1/3 av den modulens elproduktion eller 1/60 (1,7%) av anläggningens produktion om man har 20 moduler. I en solcellsanläggning blir ett sådant bortfall så litet att det kan vara svårt att upptäcka om man bara tittar på effekten.

Om däremot en växelriktare slutar fungera blir bortfallet 100% om man har en växelriktare eller 50% om man har två växelriktare. Sådana fel är lättare att upptäcka.

Kopplingsfel mellan moduler vid installationen skulle kunna leda till att alla moduler inte är inkopplade till växelriktaren, vilket då sänker anläggningens effekt. För att upptäcka sådana fel kan man studera vilken spänning anläggningen ger. I modulernas datablad finns en angiven spänning vid STC, anges ofta som Vmp. Våra första solcellsmoduler hade Vmp = 35,5 V. Om man seriekopplar 20 sådana moduler blir spänningen 710 V vid STC. Det kan vara ett riktvärde för vilket spänning man bör förvänta sig mitt på dagen vid soligt väder, men man får tänka på att spänningen sjunker när solcelltemperaturen stiger över 25°C.

Ett alternativ är använda effektoptimerare på modulerna som ger loggning på varje eller varannan modul. Det är då lätt även för den som inte är insatt att se om någon modul producerar sämre än övriga moduler. Dock tillkommer kostnaden för optimerare och det är inte så vanligt med modulfel, så det är en avvägning man får göra mellan kostnad och funktion.

Solcellsanläggningar behöver tillsyn

Det sägs ibland att solcellsanläggningar är underhållsfria. Oftast är det så, men det betyder inte att de är tillsynsfria. Det är viktigt att man regelbundet tittar till anläggningen och kollar att den producerar el. Man kan enkelt kolla det själv genom att titta på växelriktarens display, om den har en sådan, eller i en portal där produktionsdata laddas upp eller i en app i telefonen. Ofta kan man också ställa in så att man får meddelande via e-post eller sms om det är något som avviker när det gäller produktionen. Oavsett hur man gör ska man komma ihåg att solcellsanläggningar behöver din tillsyn.

PS 16/4. Gjorde några språkliga justeringar och kompletterade med lite information om höga intensiteter av solstrålning. Lade dessutom in tre nya figurer:
1) Solcelltemperatur hemma hos oss under en varm julivecka ifjol.
2) Reflektionsförluster i glasytan på en solcellsmodul, beroende på solljusets infallsvinkel.
3) Solstrålningens olika komponenter.

Solcellssafari i Västra Mälardalen 15, 22 och 28 maj

$
0
0

Energi- och klimatrådgivningen anordnar “Solcellssafari Västra Mälardalen” vid tre tillfälle i maj i Västmanland, med start i morgon. Kanske ses vi då?

Arboga. Golfklubben, 15 maj klockan 18-20.
Solcellsexpert på plats: Bengt Stridh.

Kungsör. Privatperson med takintegrerade solceller (istället för takpannor), 22 maj klockan 18-20.
Solcellsexpert på plats: Bengt Stridh.

Köping. Företaget Ferrita, 28 maj klockan 17-19.
Solcellsexpert på plats: Hugo Franzen.

Föranmälan görs enligt anvisningar på webbsidan ovan.


Tegeltak av solcellspannor

$
0
0

Var med som guide på solcellssafari i Kungsör den 22 maj. Besöket var vid en villa där man låtit installera byggnadsintegrerade solceller i form av svarta takpannor med solceller. När man skulle byta tak valde man denna lösning. Den ena sidan av taket hade 456 svarta solcellspannor som vardera hade märkeffekt 9 W, vilket ger en total märkeffekt på 4,1 kW. Installationen bestod av 12 slingor med 40 pannor per slinga, undantaget någon slinga, med Solar Edge optimerare och växelriktare. På den andra sidan av taket hade man likadana pannor utan solceller.

Pris

Husägarna fick ett investeringsstöd på 45 000 kr (30%) vilket ger ett pris på 150 000 kr = 36 585 kr/kW för solcellssystemet. Enligt uppgift från husägaren var priset ungefär dubbelt så högt som ett bud man fått med standardmoduler. Eftersom priset var en del av en hel takomläggning hade man fått backning av länsstyrelsen på hur stor andel av priset som var för solcellssystemet. Det finns väl därför en en viss osäkerhetsmarginal i priset när denna uppdelning gjordes. Men husägarna valde ändå lösningen med takpannor då man tyckte att det blev ett snyggare tak.

Installationskostnaden var högre än med standardmoduler. I detta fall när man ändå skulle byta det gamla tegeltaket bör man dock titta på den extra kostnaden att installera solceller jämfört med att bara byta ut det gamla tegeltaket. Därför blir ovanstående uträkning av pris per kW missvisande.

Verkningsgrad

I broschyr från Rustabo Sol står att pannan har en ”hög effektivitet”. Man skriver ”Du får 9W per solpanna med 20,22% i verkningsgrad.”. Detta är dock lur… Tittar man i databladet från ZEP ser man att det är verkningsgraden för solcellerna. Om man tar hänsyn till pannans hela yta blir verkningsgraden bara 6,2%. Det blir dock inte helt rätt att ta hela pannans yta heller eftersom pannorna överlappar varandra.

Med standardmoduler hade den installerade effekten blivit ca 8 kW enligt uppskattning av takyta på Google Maps och antaget en modulverkninsgrad på 17-18%.  Det gör stor skillnad i solelproduktion och intäkt jämfört med de 4,1 kW det blev med solcellspannorna. Om min uppskattning stämmer skulle man hamna på strax under 10% i verkningsgrad för taket med solcellspannor.

En besökare på solcellssafarin undrade om den högre temperaturen som byggnadsintegrering ger medför lägre solelproduktion. Verkningsgraden sjunker visserligen med 0,4% per grad högre temperatur, men i detta fall är den stora skillnaden att den installerade effekten blir betydligt lägre med solcellspannorna.

S:t Eriks anger att ”solcellspannan bygger på Nibra enkupig flacktegel som tillverkas i Tyskland. Solcellerna har utvecklats i Holland, där de också tillverkas och monteras.” Solcellspannorna har 30 års garanti både för tegelpannan och solcellernas elproduktion enligt broschyren från Rustabo Sol.

Montering

En detalj i sammanhanget är att det blir fler än tio gånger så många solcellskontakter att montera jämfört med standardmoduler och då ökar risken för misstag vid monteringen. Husägaren hade noterat att en slinga producerade mindre el än de övriga och det berodde på att en kontakt inte var ordentligt isatt, ett fel som installatören snabbt var på plats och åtgärdade.

Snyggt

Det blev ett snyggt tak som husägarna var stolta över och det estetiska tror jag att fler kommer att titta på i framtiden.

Möte i IEA PVPS Task 15 BIPV i Montreal

$
0
0

Åker idag till Montreal. I veckan deltar jag tillsammans med Jessica Benson, RISE, och Anna Svensson, Soltech Energy, i ett för denna omgång avslutande möte för IEA PVPS Task 15. En dag av mötet är vikt för att planera för nästa omgång av Task 15, där Anna Svensson är tänkt att bli ny deltagare från Sverige.

IEA PVPS Task 15

Sverige deltar i IEA PVPS (International Energy Agency Photovoltaic Power System Programme) Task 15 Enabling Framework for the Acceleration of BIPV (Building Integrated Photovoltaics = byggnadsintegrerade solceller) genom Bengt Stridh, Mälardalens högskola, David Larsson, Solkompaniet, Jessica Benson, RISE, Peter Kovacs, RISE, och Rickard Nygren, White arkitekter. 50% av finansieringen för det svenska deltagandet kommer från Energimyndigheten.

Spaning efter solceller i Montreal

$
0
0

Idag var det uppvärmning och återhämtning efter gårdagens långa resa till Montreal inför veckans möte i IEA PVPS Task 15 om byggnadsintegrerade solceller. Anna Svensson, Soltech Energy, Jessica Benson, RISE och jag gjorde en stadstur och plockade några solcellsinstallationer, se bilderna.

IEA PVPS Task 15

Sverige deltar i IEA PVPS (International Energy Agency Photovoltaic Power System Programme) Task 15 Enabling Framework for the Acceleration of BIPV (Building Integrated Photovoltaics = byggnadsintegrerade solceller) genom Bengt Stridh, Mälardalens högskola, David Larsson, Solkompaniet, Jessica Benson, RISE, Peter Kovacs, RISE, och Rickard Nygren, White arkitekter. 50% av finansieringen för det svenska deltagandet kommer från Energimyndigheten. Anna Svensson, Soltech Energy, är inbjuden till detta möte i Montreal, då en ny fas av Task 15 ska planeras.

IEA PVPS Task 15 möte i Montreal

$
0
0

Mötet med IEA PVPS Task 15 om byggnadsintegrerade solceller har nu pågått i två intensiva dagar. Fas 1 avslutas i år och detta var det sista gemensamma mötet. Idag planerade vi för fas 2 som beräknas starta i november i år.

Fick höra en variant på stödsystem för solceller som man har i Frankrike. Där får man 500 Euro/kW under de tre första åren. Däremot får man inte betalt för det överskott av el som man matar in till nätet.

IEA PVPS Task 15

Sverige deltar i IEA PVPS (International Energy Agency Photovoltaic Power System Programme) Task 15 Enabling Framework for the Acceleration of BIPV (Building Integrated Photovoltaics = byggnadsintegrerade solceller) genom Bengt Stridh, Mälardalens högskola, David Larsson, Solkompaniet, Jessica Benson, RISE, Peter Kovacs, RISE, och Rickard Nygren, White arkitekter. 50% av finansieringen för det svenska deltagandet kommer från Energimyndigheten. Anna Svensson, Soltech Energy, är inbjuden till detta möte i Montreal, då en ny fas av Task 15 ska planeras.

 

Tar ditt elnätbolag betalt för inmatningsabonnemang för nettoproducenter?

$
0
0

Enligt ellagen gäller att

“En elanvändare som har ett säkringsabonnemang om högst 63 ampere och som producerar el vars inmatning kan ske med en effekt om högst 43,5 kilowatt ska inte betala någon avgift för inmatningen. Detta gäller dock bara om elanvändaren under ett kalenderår har tagit ut mer el från elsystemet än han har matat in på systemet.”

Småhusägare som under ett år är nettokonsumenter av el behöver alltså enligt ellagen inte betala för inmatningsabonnemang,  Om man däremot är en nettoproducent som matar in mer överskottsel till nätet än vad man köper har nätägaren rätt att ha ut en årlig avgift för inmatningsabonnemanget.

Det är en smula märkligt att regelverket för nettokonsument och nettoproducent gäller oavsett hur mycket solel man producerar eller säljer, bara inmatningen till elnätet är högst 43,5 kW, vilket ingen normal småhusägare uppnår. Det rimliga vore att ta bort kravet att man måste vara nettokonsument så att tillgängliga takytor kan utnyttjas maximalt, utan att man ska behöva vara oroad för att bli nettoproducent och få en årlig avgift som sänker denna ambition. 

Ett färskt exempel är att jag funderar på att låta sätta solceller på vår sommarstuga. Det får plats runt 3 kW, men installerar vi så mycket blir vi säkert nettoproducenter då vår årliga elanvändning bara är runt 1 500 kWh i genomsnitt. Ringde nätbolaget Ljusdals Energi idag men kunde inte få något besked om de tar betalt för inmatningsabonnemanget om vi blir nettoproducenter. De skulle återkomma med svar.

Det finns nätbolag som inte tar betalt för inmatningsabonnemanget även om man blir nettoproducent. En ändring skulle behövas i ellagen så att det blir regel och inte undantag.

Skriv gärna en kommentar till detta inlägg om ditt elnätbolag tar betalt eller inte för inmatningsabonnemang för småhusägare som är nettoproducenter!

 

Bondfångeri när det gäller effekten av skuggning av solceller

$
0
0

Fick nedanstående brev från Vattenfall i juni 2019 tillskickat mig. Där står att

”I ett system utan optimerare producerar alla paneler i enlighet med den som presterar sämst. Blir en panel skuggad, slutar hela anläggningen att producera”.

Detta är rent bondfångeri och det är tråkigt att läsa sådana falsarier från landets största elhandelsbolag och som även är vårt nätbolag. Tyvärr är man inte ensam om denna vilseledande marknadsföring. Liknade utsagor kan läsas på flera andra webbsidor från olika leverantörer av komponenter och solcellsanläggningar.

Skuggning är ett lite knepigt och missförstått ämne. Alla borde läsa Skuggningshandboken från Energiforsk. Den ger en baskunskap som alla som säljer solceller måste ha, men som tyvärr vissa verkar sakna.

Uppbyggnaden av en solcellsmodul

Solcellsmoduler har ofta 60 eller 72 solceller. Då varje solcell bara ger runt 0,5 V vid drift seriekopplar man solcellerna för att höja spänningen. Alla solceller sitter som på en rad kan man säga. Det gör att solcellsmodulen skulle bli mycket känslig för skuggning om man inte vidtog åtgärder för det. Utan några åtgärder skulle skuggning av enda solcell sänka produktionen i hela solcellsmodulen och i hela solcellsanläggningen. Det skulle dessutom ge upphov till ”hot-spots” i den skuggade cellen då hela effekten från de oskuggade cellerna i modulen skulle dumpas i den skuggade solcellen.

MEN, så vill man förstås inte ha det. Därför monterar man så kallade bypassdioder i solcellsmodulerna. Vanligen är det tre bypassdioder i varje modul. I en modul med 72 solceller innebär det att en bypassdiod monteras parallellt med 24 solceller i serie, det vill säga 1/3 av modulens solceller. Så länge modulen är oskuggad är dioderna inaktiva, men när modulen blir skuggad blir dioderna aktiva och minskar skugginverkan.

Vad händer vid skuggning

Låt säga att vi skuggar 50% av en solcell i en modul. Den högsta ström som kan genereras av den skuggade solcellen halveras därmed jämfört med en oskuggad solcell. Bypassdioden kommer att aktiveras och släppa fram överströmmen. Om en oskuggad cell genererar exempelvis 8 A kommer 4 A att genereras av den skuggade solcellen och 4 A kommer att gå igenom bypassdioden.

Full ström kommer att genereras av övriga 2/3 av modulen. Det betyder att det är endast den tredjedel av solcellsmodulen som skuggas som får en lägre solelproduktion, övriga 2/3 av modulen och resterande moduler i serien av moduler kommer att producera normalt.

Värt att notera är att ett solcellssystem med optimerare på modulerna bara kan minska förlusterna på grund av skuggning, det kan aldrig producera mer än ett oskuggat solcellssystem.

Läs Skuggningshandboken

Läs Skuggningshandboken för en mer utförlig beskrivning av hur skuggning av solceller fungerar, då ovanstående resonemang är kortfattat och något generaliserat. Professor Björn Karlsson är hjärnan bakom Skuggningshandboken och Björn har faktagranskat detta inlägg.

Se även nedanstående schematiska exempel.

Sluta med vilseledande marknadsföring

Det är inte bra för branschens förtroende att ge kunder felaktig information. Det finns risk för anmälningar till Konsumentombudsmannen.

Uppmanar alla som känner sig träffade att raskt sluta med vilseledande marknadsföring gällande skuggningseffekter på solceller.

Schematiska exempel

Nedan är några schematiska exempel jag gjort för högskole- och civilingenjörsstudenter i kursen Solceller och solfångare vid Mälardalens högskola

Oskuggad modul

En solcellsmodul har 40 solceller i serie i fyra kolumner. Det är 10 solceller i varje kolumn. Varje enskild solcell har Isc = 9 A (korslutningsström) och Imp = 8,5 A (ström vid max effekt) vid en solinstrålning på 1000 W/m2 och en solcelltemperatur på 25°C. Varje enskild solcell har Voc = 0,6 V (spänning vid öppen krets) och Vmp = 0,5 V (spänning vid max effekt).

Bypassdioder finns mellan kolumnerna 1 och 2 respektive mellan kolumnerna 3 och 4. Det betyder att man kan se det som två delserier med 20 solceller vardera där de två delserierna sitter i serie med varandra.

Orange linje visar strömmens väg igenom en oskuggad modul, då båda dioderna är inaktiva. All ström går igenom solcellerna och ingen ström går igenom dioderna, förutom en försumbar läckström.

Notera att det inte spelar någon roll hur många solceller man helt skuggar om de sitter i en och samma delserie. Det blir samma resultat om man exempelvis skulle ha snö längst ner på en liggande modul som helt skuggar alla 20 solcellerna i en delserie som om man exempelvis hade löv som helt täckte en enda solcell.

Modul med en helt skuggad solcell

En solcell är helt skuggad (solinstrålning = 0), helt snötäckt eller skadad. Det gör att strömmen är noll genom denna solcell och därmed kan ingen ström gå igenom någon av solcellerna i den delserien av solceller.

Strömmen går istället igenom bypassdioden som sitter parallellt med den delserien av solceller.

Spänningsfallet över bypassdioden är här satt till -0,6 V. Arbetsspänning över alla celler Vmp blir 20 oskuggade solceller * 0,5 V per solcell – 0,6 V över bypassdioden = 9,4 V.

Spänningen för öppenkrets Voc blir på motsvarande sätt 20 * 0,6 V – 0,6 V= 11,4 V.

Den andra dioden är inaktiv eftersom denna delserie med 20 solceller är oskuggad och där genereras full ström genom den delserien.

I detta fall tappar man 50% av modulens solelproduktion. Övriga moduler som sitter i serie med denna modul påverkas inte. Om man har en serie med låt säga 10 moduler tappar man 1/20 = 5% av systemets solelproduktion. I en solcellsmodul med tre bypassdioder skulle man tappa 1/3 av solelproduktionen och 1/30 = 3,3% av systems solelproduktion om man har 10 solcellsmoduler i serie.

Modul med en solcell som är skuggad till 50%

En solcell är skuggad eller snötäckt till 50% (solinstrålning = 50% av oskuggad solcell). Det gör att högst halva strömmen kan genereras av den skuggade solcellen och dess delserie.

Den andra dioden är inaktiv eftersom denna delserie med 20 solceller är oskuggad och där genereras full ström genom den delserien.

I detta fall tappar man också 50% av modulens solelproduktion. Övriga moduler som sitter i serie med denna modul påverkas inte. I en solcellsmodul med tre bypassdioder skulle man tappa 1/3 av solelproduktionen och 1/30 = 3,3% av systems solelproduktion om man har 10 solcellsmoduler i serie.

Konferensen ICAE i Västerås börjar i morgon

$
0
0

Konferensen International Conference on Applied Energy (ICAE) hålls i år i Västerås med start i morgon i Aros Congress Center. Efter lunch fortsätter konferensen på Mälardalens Högskola. Konferensen pågår även under onsdag och torsdag. Totalt har konferensen ca 800 bidrag så där finns mycket att lyssna på och titta på under posterutställningen. Titta gärna i konferensprogrammet. Det finns fortfarande möjlighet att registrera sig för konferensen på plats.


Ny IEA-rapport om svenska solcellsmarknaden

$
0
0

IEA-PVPS har nu publicerat 2018 års upplaga av National Survey Report of PV Power Applications in Sweden. Ladda ner rapporten och läs, där finns mycket information. Författarna Johan Lindahl, Christina Stoltz, Amelia Oller-Westerberg och Jeffrey Berard har lagt ner ett stort arbete att samla in och presentera matnyttig kunskap om den svenska solcellsmarknaden. Rapporten sammanställer den svenska solcellsmarknadens utveckling fram till och med 2018 när det gäller installerad effekt, stödsystem, regelverk och prisutvecklingen samt den svenska solcellsindustrins utveckling.

Den installerade effekten av nätanslutna och icke-nätanslutna anläggningar anges till 425,7 MW i slutet av 2018. Man har uppskattat att den effekten skulle kunna producera 404 GWh, vilket skulle motsvara 950 kWh/kW i genomsnitt. Det är tämligen säkert en överdrift. Enligt Erik Schelins examensarbete “Photovoltaic system yield evaluation in Sweden: A performance review of PV systems in Sweden 2017-2018“, som jag var handledare för i våras vid Mälardalens högskola, är det genomsnittliga utbytet för svenska solcellsanläggningar lägre. Får återkomma till det i ett senare inlägg.

Lär dig mer om solceller och laddplatser för elbilar – Västerås 17/9

$
0
0

Den 17 september arrangerar Energikontoret i Mälardalen, Länsstyrelsen i Västmanland och Energi- och klimatrådgivningen i Västerås stad evenemanget “Lär dig mer om solceller och laddplatser för elbilar“. Det hålls i Elite Stadshotell, Västerås. Man vänder sig speciellt till företag och bostadsrättsföreningar, men även andra intresserade är välkomna. Anmälan görs via deras webbsida.
Vi kanske ses där!

1 335 nya miljoner i investeringsstöd för solceller

$
0
0

Annie Lööf utlovade idag nya pengar till investeringsstödet för solceller.

Stödet utökas nu med ytterligare 500 miljoner kronor för resten av 2019, vilket gör att den totala satsningen för 2019 hamnar på 1,2 miljarder kronor. För 2020 kommer totalt 835 miljoner kronor av budgeten att gå till solcellsstöd.

Se även “500 miljoner kronor mer till solcellsstödet i höständringsbudgeten” från regeringen.

Utmärkt!

En överraskning att det kommer mera pengar redan i år. Än intressantare är att Rickard Nordins tweet “Vi fyller på solcelsstödet i väntan på att det ska fasas ut och ersättas av ”grönt avdrag” i nästa höstbudget!”. Centerpartiet vill alltså från 2021 ha ett grönt avdrag, inte bara för solceller. Enligt “Grönt avdrag för investeringar som ger effekt på klimatet” vill centerpartiet att skatteavdraget ska gälla för

  • Installation av solceller
  • Installation av solvärme
  • Lagring av energi (batterier/Power Wall)
  • Installation av laddboxar för elbilar (både egnahem och BRF)
  • Mätare, styrsystem och kartläggning för effektivare energianvändning

En stor applåd för att Centerpartiet även tänker solvärme. Det blygsamma stöd som fanns för solvärme togs bort i slutet av 2011. Sedan dess har det varit en ensidig stödsatsning räknad i miljarder som gynnat solceller i form av investeringsstöd, skattereduktion för överskottsel, ingen avgift för inmatningsabonnemang om högst 63A säkring och elcertifikat, men inget riktat stöd alls till solvärme. Det har gjort att solvärmebranschen nästan försvunnit i Sverige och någon forskning på solvärme på högskolor och universitet finns knappast. Om världen ska bli fossilfri kommer både solceller och solvärme att behövas.

 

Mycket stort intresse för solceller och laddning av elbilar i Västerås

$
0
0

Energikontoret i Mälardalen, Länsstyrelsen i Västmanland och Energi- och klimatrådgivningen i Västerås stad höll i eftermiddag – kväll evenemanget “Lär dig mer om solceller och laddplatser för elbilar“ på Elite Stadshotell iVästerås. Man vände sig speciellt till företag och bostadsrättsföreningar, men även andra intresserade var välkomna. Det var mycket stort intresse. Jag höll föreläsningar om solceller och Daniel Kulin, Power Circle, om elbilar. Det var 68 personer på första passet för företag och 110 personer (lapp på luckan, det var fler intresserade än platser) på andra passet för bostadsrättsföreningar och övriga. Dessutom var det en utställning med 20-talet företag som visade erbjudanden för solceller och elbilsladdning.

Måste man höja säkringsabonnemanget vid solcellsinstallation?

$
0
0

Det kom en kommentar ”Jag har 25 A och vill kunna producera upp till 22 kW” i en tråd, med kommentaren att de var tvungna att höja säkringsabonnemanget till 35 A för att klara det. Liknande frågor har även diskuterats tidigare, så det kan vara dags att samla lite synpunkter på denna problematik.

Är det nödvändigt att höja säkringsabonnemanget?

Nej, är det korta svaret.

25 A säkring klarar 25 A * 230 V * 3 faser = 17 250 W = 17,25 kW i inmatning till nätet. Men det betyder inte nödvändigtvis att 17 kW är taket för installerad solcellseffekt.

  • Den installerade märkeffekten är likström (DC). Växelriktaren som omvandlar till växelström (AC) och kablar ger alltid några procent i förlust, vilket gör att effekten blir lägre efter växelriktaren respektive i inmatningspunkten till nätet.
  • Ovanstående punkt i kombination med den högre solcelltemperaturen åtminstone sommartid som sänker verkningsgraden och om installationen inte är gjord med helt optimerad lutning och väderstreck, vilket är vanligt för småhus, gör att de flesta solcellsanläggningar aldrig når märkeffekten. I ett simuleringsprogram kan man beräkna vad den högsta effekten blir under en timme med givna förutsättningar för installerad effekt, lutning och väderstreck.
  • Om man kan installera i två olika väderstreck, typ väster och öster, minskar den producerade toppeffekten betydligt, eftersom effekttopparna för de olika väderstrecken kommer vid olika tidpunkter under dagen. Även en installation med två olika taklutningar minskar toppeffekten av samma skäl.
  • Man kan välja solcellsmoduler med lägre verkningsgrad, om det är så att man vill fylla en viss yta med solceller. Det minskar den installerade effekten och blir också billigare än om man skulle välja moduler med en högre verkningsgrad.
  • Om man alltid har en viss egenanvändning minskar inmatat överskott till nätet. Hos oss dock bara 300-400 W när vi inte är hemma, för FTX-ventilation, kyl och frys etc.
  • Man kan köpa en växelriktare som har möjligheten att begränsa hur mycket effekt som matas in till nätet, då säkerställs att man inte överskrider vad säkringen tål. Detta är en enkel lösning på problemet.
    Man förlorar den solelproduktion som ligger över den begränsade effekten, men det är så liten andel av årsproduktionen att det blir billigare än att betala en årlig avgift för ett högre säkringsabonnemang i det nämnda fallet ovan.

16 A säkring klarar 16 A * 230 V * 3 faser = 11 040 = 11,04 kW i inmatning till nätet. De allra flesta solcellsinstallationer på småhus har lägre inmatad toppeffekt till nätet än 11 kW. Därmed är ovanstående problematik inget en normal småhusägare behöver tänka på.

Viewing all 318 articles
Browse latest View live